Coefficient estimates for Ruscheweyh derivatives
نویسندگان
چکیده
منابع مشابه
Coefficient estimates for Ruscheweyh derivatives
are classes of starlike and strongly starlike functions of order β (0 < β ≤ 1), respectively. Note that S∗(β)⊂ S∗ for 0< β< 1 and S∗(1)= S∗ [5]. Kanas [2] introduced the subclass R̄δ(β) of function f ∈ S as the following. Definition 1.1. For δ ≥ 0, β ∈ (0,1], a function f normalized by (1.1) belongs to R̄δ(β) if, for z ∈D−{0} and Dδf(z)≠ 0, the following holds: ∣∣∣arg z ( Dδf(z) )′ Dδf(z) ∣∣∣≤ βπ...
متن کاملUnivalent Functions Defined by Ruscheweyh Derivatives
We study some radii problems concerning the integral operator z F(z)y+l uY-I f(u) du zy o for certain classes, namely K and M (a), of univalent functions defined by Ruscheweyh n n derivatives. Infact, we obtain the converse of Ruscheweyh’s result and improve a result of Goel and Sohi for complex by a different technique. The results are sharp.
متن کاملProperties of Certain Multivalent Functions Involving Ruscheweyh Derivatives
Let Ap(p ∈ N) be the class of functions f(z) = z + ∑∞ m=1 ap+mz p+m which are analytic in the unit disk. By virtue of the Ruscheweyh derivatives we introduce the new subclasses Cp(n, α, β, λ, μ) of Ap. Subordination relations, inclusion relations, convolution properties and a sharp coefficient estimate are obtained. We also give a sufficient condition for a function to be in Cp(n, α, β, λ, μ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2004
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171204309051